Perner, C. et al. Substance P release by sensory neurons triggers dendritic cell migration and initiates the type-2 immune response to allergens. Immunity 53, 1063â1077.e1067 (2020).
Serhan, N. et al. House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation. Nat. Immunol. 20, 1435â1443 (2019).
Wilson, S. R. et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155, 285â295 (2013).
Voisin, T. et al. The CysLT(2)R receptor mediates leukotriene C(4)-driven acute and chronic itch. Proc. Natl Acad. Sci. USA 118, e2022087118 (2021).
Wang, F. et al. A basophil-neuronal axis promotes itch. Cell 184, 422â440.e417 (2021).
Cevikbas, F. et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1. J. Allergy Clin. Immunol. 133, 448â460 (2014).
Oetjen, L. K. et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell 171, 217â228.e213 (2017).
Castillo-González, R., Cibrian, D. & Sánchez-Madrid, F. Dissecting the complexity of γδ T-cell subsets in skin homeostasis, inflammation, and malignancy. J. Allergy Clin. Immunol. 147, 2030â2042 (2021).
Hoeffel, G. et al. Sensory neuron-derived TAFA4 promotes macrophage tissue repair functions. Nature 594, 94â99 (2021).
Chiu, I. M. et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501, 52â57 (2013).
Riol-Blanco, L. et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510, 157â161 (2014).
Kumamoto, Y. et al. CD301b+ dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39, 733â743 (2013).
Sokol, C. L., Barton, G. M., Farr, A. G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat. Immunol. 9, 310â318 (2008).
Shimada, S. G. & LaMotte, R. H. Behavioral differentiation between itch and pain in mouse. Pain 139, 681â687 (2008).
Meixiong, J. et al. Activation of mast-cell-expressed mas-related G-protein-coupled receptors drives non-histaminergic itch. Immunity 50, 1163â1171.e1165 (2019).
Nielsen, M. M., Witherden, D. A. & Havran, W. L. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat. Rev. Immunol. 17, 733â745 (2017).
Boyden, L. M. et al. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat. Genet. 40, 656â662 (2008).
Havran, W. L. et al. Limited diversity of T-cell receptor gamma-chain expression of murine Thy-1+ dendritic epidermal cells revealed by V gamma 3-specific monoclonal antibody. Proc. Natl Acad. Sci. USA 86, 4185â4189 (1989).
Nielsen, M. M. et al. IL-1β-Dependent activation of dendritic epidermal T cells in contact hypersensitivity. J. Immunol. 192, 2975â2983 (2014).
Chodaczek, G., Papanna, V., Zal, M. A. & Zal, T. Body-barrier surveillance by epidermal γδ TCRs. Nat. Immunol. 13, 272â282 (2012).
Tan, L. et al. Single-cell transcriptomics identifies the adaptation of Scart1+ Vγ6+ T cells to skin residency as activated effector cells. Cell Rep. 27, 3657â3671.e3654 (2019).
McKenzie, D. R. et al. Normality sensing licenses local T cells for innate-like tissue surveillance. Nat. Immunol. 23, 411â422 (2022).
Russell-Goldman, E. & Murphy, G. F. The pathobiology of skin aging: new insights into an old dilemma. Am. J. Pathol. 190, 1356â1369 (2020).
Naik, S. et al. Compartmentalized control of skin immunity by resident commensals. Science 337, 1115â1119 (2012).
Augustin, M. et al. Prevalence, predictors and comorbidity of dry skin in the general population. J. Euro. Acad. Dermatol. Venereology 33, 147â150 (2019).
Wärnberg Gerdin, S. et al. Impaired skin barrier and allergic sensitization in early infancy. Allergy 77, 1464â1476 (2022).
Gentek, R. et al. Epidermal γδ T cells originate from yolk sac hematopoiesis and clonally self-renew in the adult. J. Exp. Med. 215, 2994â3005 (2018).
Mohamed, R. H. et al. The SKINT1-like gene is inactivated in hominoids but not in all primate species: implications for the origin of dendritic epidermal T cells. PLoS ONE 10, e0123258 (2015).
Gellatly, K. J. et al. scRNA-seq of human vitiligo reveals complex networks of subclinical immune activation and a role for CCR5 in T(reg) function. Sci. Transl. Med. 13, eabd8995 (2021).
Reynolds, G. et al. Developmental cell programs are co-opted in inflammatory skin disease. Science 371, eaba6500 (2021).
Dougan, M., Dranoff, G. & Dougan, S. K. GM-CSF, IL-3, and IL-5 family of cytokines: regulators of inflammation. Immunity 50, 796â811 (2019).
Wangzhou, A. et al. Pharmacological target-focused transcriptomic analysis of native vs cultured human and mouse dorsal root ganglia. Pain 161, 1497â1517 (2020).
Jung, M. et al. Cross-species transcriptomic atlas of dorsal root ganglia reveals species-specific programs for sensory function. Nat. Commun. 14, 366 (2023).
Sharma, N. et al. The emergence of transcriptional identity in somatosensory neurons. Nature 577, 392â398 (2020).
Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999â1014.e1022 (2018).
Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145â153 (2015).
Silverberg, J. I. et al. Efficacy and safety of abrocitinib in patients with moderate-to-severe atopic dermatitis: a randomized clinical trial. JAMA Dermatol. 156, 863â873 (2020).
Narla, S., Silverberg, J. I. & Simpson, E. L. Management of inadequate response and adverse effects to dupilumab in atopic dermatitis. J. Am. Acad. Dermatol. 86, 628â636 (2022).
Toulon, A. et al. A role for human skin-resident T cells in wound healing. J. Exp. Med. 206, 743â750 (2009).
Profet, M. The function of allergy: immunological defense against toxins. Quarterly Rev. Biol. 66, 23â62 (1991).
McAlpine, C. S. et al. Astrocytic interleukin-3 programs microglia and limits Alzheimerâs disease. Nature 595, 701â706 (2021).
Kiss, M. G. et al. Interleukin-3 coordinates glial-peripheral immune crosstalk to incite multiple sclerosis. Immunity 56, 1502â1514.e1508 (2023).
Lefteri, D. A. et al. Mosquito saliva enhances virus infection through sialokinin-dependent vascular leakage. Proc. Natl Acad. Sci. USA 119, e2114309119 (2022).
Sandrock, I. et al. Genetic models reveal origin, persistence and non-redundant functions of IL-17-producing γδ T cells. J. Exp. Med. 215, 3006â3018 (2018).
Zhang, B. et al. Differential requirements of TCR signaling in homeostatic maintenance and function of dendritic epidermal T cells. J. Immunol. 195, 4282â4291 (2015).
Voehringer, D., Liang, H. E. & Locksley, R. M. Homeostasis and effector function of lymphopenia-induced âmemory-likeâ T cells in constitutively T cell-depleted mice. J. Immunol. 180, 4742â4753 (2008).
Miyamoto, T., Nojima, H., Shinkado, T., Nakahashi, T. & Kuraishi, Y. Itch-associated response induced by experimental dry skin in mice. Jpn J. Pharmacol. 88, 285â292 (2002).
Trier, A. M. et al. IL-33 signaling in sensory neurons promotes dry skin itch. J. Allergy Clin. Immunol. 149, 1473â1480.e1476 (2022).
Yarmolinsky, D. A. et al. Coding and plasticity in the mammalian thermosensory system. Neuron 92, 1079â1092 (2016).
Thévenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27â41 (1998).
Pnevmatikakis, E. A. et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89, 285â299 (2016).
Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683â694 (2016).
Tomura, M. et al. Monitoring cellular movement in vivo with photoconvertible fluorescence protein âKaedeâ transgenic mice. Proc. Natl Acad. Sci. USA 105, 10871â10876 (2008).
Lee, M. et al. Single-cell RNA sequencing identifies shared differentiation paths of mouse thymic innate T cells. Nat. Commun. 11, 4367 (2020).
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
Li, B. et al. Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq. Nat. Methods 17, 793â798 (2020).
Batson, J., Royer, L. & Webber, J. Molecular cross-validation for single-cell RNA-seq. Preprint at bioRxiv https://doi.org/10.1101/786269 (2019).
La Manno, G. et al. RNA velocity of single cells. Nature 560, 494â498 (2018).
Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408â1414 (2020).
Lange, M. et al. CellRank for directed single-cell fate mapping. Nat. Methods 19, 159â170 (2022).
Reynolds, G. et al. Data for developmental cell programs are co-opted in inflammatory skin diseaseâfiltered, annotated anndata object. Zenodo https://doi.org/10.5281/zenodo.4288748 (2020).